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IEEE Arithmetic

What is for short called “IEEE arithmetic” is the standard for
floating point numbers in nearly all currently manufactured com-
puters (everything except IBM mainframes).

What you need to know about IEEE arithmetic is that there are
two kinds of floating point numbers. In C the types are

• float about 6.9 decimal digits precision

• double about 15.6 decimal digits precision

In R only double is used. Go and do likewise.
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IEEE Arithmetic (cont.)

IEEE arithmetic also represents values that are not ordinary float-

ing point numbers. In R these are printed

• NaN meaning not a number

• Inf meaning +∞

• -Inf meaning −∞

3



IEEE Arithmetic (cont.)

These follow obvious rules of arithmetic

NaN + x = NaN

NaN ∗ x = NaN

Inf + x = Inf, x > -Inf

Inf + -Inf = NaN

Inf ∗ x = Inf, x > 0

Inf ∗ 0 = NaN

x/0 = Inf, x > 0

0/0 = NaN
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Overflow

In R the function is.finite tests that numbers are not any of

NA, NaN, Inf, -Inf.

Can have all(is.finite(x)) equal to TRUE but sum(x) or prod(x)

equal to Inf. This is called overflow.

To be avoided if at all possible. Loss of all significant figures.

Example: log(exp(710)) is Inf not 710.
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Underflow

An IEEE arithmetic result can be zero, when the exact infinite

precision result would be positive but smaller than the smallest

positive number representable in IEEE arithmetic. This is called

underflow.

Example: log(exp(-746)) is -Inf not 746.

Underflow is not a worry if the result is later added to a large

number.

Example: log(1 + exp(-746)) is 0, which is correct.
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Denormalized Numbers

Between the smallest positive number representable with full

(15.6 decimal digit) precision and zero are numbers representable

with less precision.

Example: log(exp(-743)) is -743.0538 not 743.
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Catastrophic Cancellation

We say “catastrophic cancellation” occurs when subtracting two

nearly equal positive numbers gives a number with much less

precision.

Example

1.020567− 1.020554 = 1.3× 10−5

Both operands have 7 decimal digits of precision. The result has

2.
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Short-Cut Formula for Variance

Never use

var(X) = E(X2)− E(X)2

It is an invitation to catastrophic cancellation.

Always use the two-pass algorithm

x̄n =
1

n

n∑
i=1

xi

vn =
1

n

n∑
i=1

(xi − x̄n)2

There is also sophisticated one-pass algorithm (see links).
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A Problem Requiring Care

The log likelihood for the binomial distribution is

l(p) = x log(p) + n log(1− p)

In terms of the natural parameter

θ = logit(p) = log

(
p

1− p

)

p =
eθ

1 + eθ

the log likelihood is

l(θ) = xθ − n log(1 + eθ)
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A Problem Requiring Care (cont.)

From the properties of likelihood

Eθ{∇l(θ)} = 0

varθ{∇l(θ)} = −Eθ{∇2l(θ)}

get

l′(θ) = x− Eθ(x)

= x− np(θ)

l′′(θ) = − varθ(x)

= −np(θ)q(θ)

where q(θ) = 1− p(θ).
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Log Likelihood Function Itself

For case θ ≤ 0 formula

l(θ) = xθ − n log(1 + eθ)

is well behaved (no overflow), otherwise

l(θ) = xθ − n log
(
eθ(e−θ + 1)

)
= (x− n)θ − n log(1 + e−θ)

is well behaved.

In both cases we should use the function

log1p(x) = log(1 + x)

(defined in both C99 and R) for more accurate calculation when
x is near zero.
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Probabilities

p(θ) =
1

1 + exp(−θ)

q(θ) =
1

1 + exp(θ)

Suffer from neither overflow nor catastrophic cancellation (if a

denominator overflows, the result is zero, which is correct).

Note well:

q(θ) = 1− p(θ)

can suffer from catastrophic cancellation. Don’t ever do that!
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Derivatives

l′(θ) = x− np(θ) (a)

l′′(θ) = −np(θ)q(θ) (b)

are fine when p(θ) and q(θ) are calculated properly.

(a) does suffer from catastrophic cancellation when the result is
nearly zero, but there appears to be no remedy.

Since p is a smooth function,

p′(θ) = p(θ)q(θ)

this limits the accuracy of the solution to more or less the accu-
racy of computer arithmetic.
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Another Problem Requiring Care

A Monte Carlo approximation of the log likelihood for an expo-

nential family with unknown normalizing constant is

ln(θ) = 〈x, θ〉 − log

1

n

n∑
i=1

e〈xi,θ−ψ〉


where x is the observed data, θ a free variable ranging over

the parameter space, 〈x, θ〉 denotes the inner product of vectors

(write xTθ if you prefer), and x1, x2, . . . are simulations from the

distribution in the family with parameter vector ψ.
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Another Problem Requiring Care (cont.)

ln(θ) = 〈x, θ〉 − log

1

n

n∑
i=1

e〈xi,θ−ψ〉


The exponentials can overflow to +Inf when the whole expression

is reasonably sized.
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Two-Pass Algorithm for the Function Itself

Let

a = max
1≤i≤n

〈xi, θ − ψ〉

Then

ln(θ) = 〈x, θ〉 − log

ea
n

n∑
i=1

e〈xi,θ−ψ〉−a


= 〈x, θ〉 − a− log

1

n

n∑
i=1

e〈xi,θ−ψ〉−a


Overflow problem fixed.
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Two-Pass Algorithm for the Function Itself (cont.)

Let

b = a− 〈x, θ − ψ〉

Then

ln(θ) = 〈x, θ〉 − a− log

1

n

n∑
i=1

e〈xi,θ−ψ〉−a


= 〈x, ψ〉 − b− log

1

n

n∑
i=1

e〈xi−x,θ−ψ〉−b


Cancellation problems improved. xi − x tends to be small when

ψ is near MLE and approximation is only good when θ is near ψ.
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First Derivative

∇ln(θ) = −

1

n

n∑
i=1

(xi − x)e〈xi−x,θ−ψ〉−b

1

n

n∑
i=1

e〈xi−x,θ−ψ〉−b
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Second Derivative

∇2ln(θ) = −

1

n

n∑
i=1

(xi − x)(xi − x)T e〈xi−x,θ−ψ〉−b

1

n

n∑
i=1

e〈xi−x,θ−ψ〉−b

+


1

n

n∑
i=1

(xi − x)e〈xi−x,θ−ψ〉−b

1

n

n∑
i=1

e〈xi−x,θ−ψ〉−b




1

n

n∑
i=1

(xi − x)e〈xi−x,θ−ψ〉−b

1

n

n∑
i=1

e〈xi−x,θ−ψ〉−b


T
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Simplification

b = max
1≤i≤n

〈xi − x, θ − ψ〉

wi =
e〈xi−x,θ−ψ〉−b∑n
j=1 e

〈xj−x,θ−ψ〉−b

∇ln(θ) = −
n∑
i=1

(xi − x)wi

∇2ln(θ) = −
n∑
i=1

(xi − x)(xi − x)Twi + [∇ln(θ)][∇ln(θ)]T
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Avoiding Catastrophic Cancellation

sθ = ∇ln(θ)

n∑
i=1

(xi − x+ sθ)wi = 0

−
n∑
i=1

(xi − x+ sθ)(xi − x+ sθ)
Twi = −

n∑
i=1

(xi − x)(xi − x)Twi

− 2sθ

n∑
i=1

(xi − x)Twi − sθsTθ

= −
n∑
i=1

(xi − x)(xi − x)Twi + sθs
T
θ

= ∇2ln(θ)
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Recap

ui = 〈xi − x, θ − ψ〉
b = max

1≤i≤n
ui

vi = exp(ui − b)

ln(θ) = 〈x, ψ〉 − b− log

1

n

n∑
i=1

vi


wi = vi

/ n∑
i=1

vi

sθ = ∇ln(θ) = −
n∑
i=1

(xi − x)wi

∇2ln(θ) = −
n∑
i=1

(xi − x+ sθ)(xi − x+ sθ)
Twi
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