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1 License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (http:
//creativecommons.org/licenses/by-sa/4.0/).

2 R
• The version of R used to make this document is 4.3.2.

• The version of the Iso package used to make this document is 0.0.21.
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• The version of the rmarkdown package used to make this document is 2.25.

3 Lagrange Multipliers
3.1 A Theorem
The following theorem originally comes from Shapiro (1979).

Theorem 3.1. Consider the following constrained optimization problem

minimize 𝑓(𝑥)
subject to 𝑔𝑖(𝑥) = 0, 𝑖 ∈ 𝐸,

𝑔𝑖(𝑥) ≤ 0, 𝑖 ∈ 𝐼,
(1)

where 𝐸 and 𝐼 are disjoint finite sets, and its Lagrangian function

𝐿(𝑥, 𝜆) = 𝑓(𝑥) + ∑
𝑖∈𝐸∪𝐼

𝜆𝑖𝑔𝑖(𝑥) (2)

If there exist 𝑥∗ and 𝜆 such that

a. 𝑥∗ minimizes 𝐿( ⋅ , 𝜆),
b. 𝑔𝑖(𝑥∗) = 0, 𝑖 ∈ 𝐸 and 𝑔𝑖(𝑥∗) ≤ 0, 𝑖 ∈ 𝐼,

c. 𝜆𝑖 ≥ 0, 𝑖 ∈ 𝐼, and

d. 𝜆𝑖𝑔𝑖(𝑥∗) = 0, 𝑖 ∈ 𝐼.

Then 𝑥∗ solves the constrained problem (1).

The conditions in the theorem are called

a. Lagrangian minimization,
b. primal feasibility,
c. dual feasibility, and
d. complementary slackness.

Say 𝑥 is feasible if the constraints in (1) are satisfied. We say 𝜆 is feasible if the constraints in condition (c)
hold. That is, primal feasibility is feasibility of 𝑥, and dual feasibility is feasibility of 𝜆.

The components of 𝜆 are called Lagrange multipliers. From the eponym, this theorem is old. In the case
where there are only equality constraints it was invented by Lagrange. Having inequality constraints is a
twentieth century innovation.

Proof. By (a)
𝐿(𝑥, 𝜆) ≥ 𝐿(𝑥∗, 𝜆), (3)

for all 𝑥, which is equivalent to

𝑓(𝑥) ≥ 𝑓(𝑥∗) + ∑
𝑖∈𝐸∪𝐼

𝜆𝑖𝑔𝑖(𝑥∗) − ∑
𝑖∈𝐸∪𝐼

𝜆𝑖𝑔𝑖(𝑥) (4)

So for feasible 𝑥
𝑓(𝑥) ≥ 𝑓(𝑥∗) − ∑

𝑖∈𝐸∪𝐼
𝜆𝑖𝑔𝑖(𝑥) ≥ 𝑓(𝑥∗) (5)

The first inequality is conditions (b) and (d), and the second inequality is (c) and feasibility of 𝑥.
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3.2 Kuhn-Tucker Conditions
When condition (a) is replaced by derivative equal to zero, that is

∇𝑓(𝑥∗) + ∑
𝑖∈𝐸∪𝐼

𝜆𝑖∇𝑔𝑖(𝑥∗) = 0, (6)

then we no longer have a theorem because we know that derivative equal to zero is neither necessary nor
sufficient for even a local minimum, much less a global one. Nevertheless, it is the conditions in this form
that have an eponym. They are called the Kuhn-Tucker conditions or the Karush-Kuhn-Tucker conditions.

For convex problems the Kuhn-Tucker conditions often guarantee a global minimum. See the section about
convex programming below.

4 Isotonic Regression
Isotonic regression is the competitor of simple linear regression (univariate response, univariate predictor)
when it is assumed that the regression function is monotone rather than linear (of course linear is also
monotone, but not vice versa; we are making a more general, weaker assumption).

4.1 Homoscedastic Normal Errors
We start with assuming homoscedastic normal errors (as in the usual theory of linear models). It will turn out
that exactly the same algorithm that solves this problem also does logistic regression or Poisson regression if
link functions are chosen to make the problem exponential family (logit link for binomial response, log link
for Poisson response).

As usual, we assume the components 𝑌𝑖 of the response vector are random and the components 𝑥𝑖 of the
predictor vector are fixed (if they are random, then we condition on their observed values).

Also, until further notice we assume the distribution of 𝑌𝑖 is Normal(𝜇𝑖, 𝜎2), which is the usual linear models
assumption. Now the monotonicity constraints are

𝑥𝑖 ≤ 𝑥𝑗 implies 𝜇𝑖 ≤ 𝜇𝑗

The unknown parameters are the vector 𝜇 having components 𝜇𝑖 and the scalar 𝜎2.

What are the maximum likelihood estimates?

4.2 Rewriting to Deal with Duplicate Predictor Values
We see that 𝑥𝑖 = 𝑥𝑗 implies 𝜇𝑖 = 𝜇𝑗. So rewrite the problem so we only have one mean parameter for each
unique predictor value.

Let 𝑧1, … , 𝑧𝑘 be the unique predictor values in sorted order.

Define

𝑤𝑗 =
𝑛

∑
𝑖=1𝑥𝑖=𝑧𝑗

1

𝑉𝑗 = 1
𝑤𝑗

𝑛
∑
𝑖=1𝑥𝑖=𝑧𝑗

𝑌𝑖

Then
𝑉𝑗 ∼ Normal(𝜈𝑗, 𝜎2/𝑤𝑗)

where
𝜈1 ≤ 𝜈2 ≤ ⋯ ≤ 𝜈𝑘
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and where
𝜈𝑗 = 𝜇𝑖 whenever 𝑧𝑗 = 𝑥𝑖

4.3 Minus Log Likelihood

𝑓(𝜇, 𝜎2) = 𝑛 log(𝜎) + 1
2𝜎2

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝜇𝑖)2

4.4 Lagrangian

𝐿(𝜇, 𝜎2, 𝜆) = 𝑛 log(𝜎) + 1
2𝜎2

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝜇𝑖)2 +
𝑘−1
∑
𝑗=1

𝜆𝑗(𝜈𝑗 − 𝜈𝑗+1)

4.5 Kuhn-Tucker Conditions
We find, as usual in least squares problems, that the equations for the means don’t involve the variance, so
our estimates for the means don’t involve the variance.

In particular,

𝜕𝐿(𝜇, 𝜎2, 𝜆)
𝜕𝜈𝑚

= 𝜆𝑚 − 𝜆𝑚−1 − 1
𝜎2

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝜇𝑖)
𝜕𝜇𝑖
𝜕𝜈𝑚

= 𝜆𝑚 − 𝜆𝑚−1 − 𝑤𝑚(𝑣𝑚 − 𝜈𝑚)
𝜎2

(7)

Note that 𝜕𝜇𝑖/𝜕𝜈𝑚 is equal to one if 𝑥𝑖 = 𝑧𝑚 and zero otherwise, so the terms in the sum in the first line
are nonzero only if 𝑥𝑖 = 𝑧𝑚.

As it stands this formula is only valid for 1 < 𝑚 < 𝑘. In order to make it valid for all 𝑚, we define
𝜆0 = 𝜆𝑘 = 0.

Setting (7) equal to zero gives us the first Kuhn-Tucker condition. So set these equal to zero, and multiply
through by 𝜎2 giving

a. −𝑤𝑚(𝑣𝑚 − 𝜈𝑚) + 𝜅𝑚 − 𝜅𝑚−1 = 0, 𝑚 = 1, … , 𝑘
where we have introduced 𝜅𝑚 = 𝜎2𝜆𝑚.

Since 𝜅𝑚 is zero, positive, or negative precisely when 𝜆𝑚 is, the rest of the Kuhn-Tucker conditions (for the
mean parameters) are

b. 𝜈𝑗 ≤ 𝜈𝑗+1, 𝑗 = 1, … , 𝑘 − 1.

c. 𝜅𝑗 ≥ 0, 𝑗 = 1, … , 𝑘 − 1.

d. 𝜅𝑗(𝜈𝑗 − 𝜈𝑗+1) = 0, 𝑗 = 1, … , 𝑘 − 1.

And, we see that, as usual, the equations for maximum likelihood estimation of the mean parameters do not
involve 𝜎2 (after some rewriting).

4.6 Blocks
We first consider applying only conditions (a) (derivative of Lagrangian equal to zero) and (d) (complemen-
tary slackness).

At any vector 𝜈, we divide it up into blocks of equal consecutive components. Such blocks have length one
if some 𝜈𝑗 is not equal to the nu on either side.
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So consider such a block. Suppose

𝜈𝑗∗−1 ≠ 𝜈𝑗∗ = ⋯ = 𝜈𝑗∗∗−1 ≠ 𝜈𝑗∗∗

where to make this work for the edge cases, we define 𝜈0 = −∞ and 𝜈𝑘+1 = +∞.

Complementary slackness implies 𝜅𝑗∗−1 = 𝜅𝑗∗∗−1 = 0. Hence, now using condition (a),

0 =
𝑗∗∗−1
∑
𝑗=𝑗∗

[ − 𝑤𝑗(𝑣𝑗 − 𝜈𝑗) + 𝜅𝑗 − 𝜅𝑗−1]

= −
𝑗∗∗−1
∑
𝑗=𝑗∗

𝑤𝑗(𝑣𝑗 − 𝜈)

where 𝜈 = 𝜈𝑗∗ = ⋯ = 𝜈𝑗∗∗−1.

Solving we get

𝜈𝑗∗ = ⋯ = 𝜈𝑗∗∗−1 =
∑𝑗∗∗−1

𝑗=𝑗∗ 𝑤𝑗𝑣𝑗

∑𝑗∗∗−1
𝑗=𝑗∗ 𝑤𝑗

In summary, applying conditions (a) and (d) only (so far), the mean values in a block of equal means is the
weighted average of the 𝑣𝑗 values, which is the unweighted average of the 𝑦𝑖 values for the block.

4.7 The Pool Adjacent Violators Algorithm (PAVA)
PAVA does the following

1. [Initialize] Set 𝜈 and 𝜅 to any values satisfying conditions (a), (c), and (d).

2. [Terminate] If condition (b) is satisfied, stop. [Kuhn-Tucker conditions are satisfied.]

3. [PAV] Choose any 𝑗 such that 𝜈𝑗 > 𝜈𝑗+1. And “pool” the blocks containing 𝑗 and 𝑗 + 1, that is, make
them one block (and the nu values for this pooled block will again be the weighted average of vee
values for this pooled block). [This step maintains conditions (a), (c), and (d).]

4. Go to step 2.

The initialization step is easy. One way to do it is to set 𝜈 = 𝑣 and 𝜅 = 0.

4.8 Non-Determinism
PAVA is a non-deterministic algorithm. In step 3, if there is more than one pair of adjacent violators, then
any one of them can be chosen to be pooled in that step. The choice can be made in any way: leftmost,
rightmost, random, whatever.

4.9 Example
To keep things simple we will assume the predictor values are the indices of the response vector (so there
are no repeated predictor values and they are in sorted order)
pava <- function(y) {

blocks <- as.list(y)
repeat {

block.means <- sapply(blocks, mean)
block.diffs <- diff(block.means)
if (all(block.diffs >= 0)) return(unlist(blocks))
j <- which(block.diffs < 0)
if (length(j) > 1) {
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# non-determinism !!!
# never call R function sample with length of first arg equal to one
# its behavior is one of the bad parts of R
j <- sample(j, 1)

}
violators <- blocks[c(j, j + 1)]
pool.length <- length(unlist(violators))
pool.mean <- mean(unlist(violators))
i <- seq_along(blocks)
blocks <- c(blocks[i < j], list(rep(pool.mean, pool.length)),

blocks[i > j + 1])
}

}

So let’s try it out.
y <- rnorm(20, mean = 1:20, sd = 3)
plot(y)
points(1:20, pava(y), pch = 19)

points(1:20, Iso::pava(y, long.out = TRUE)$y, pch = 19, col = "red")

5 10 15 20

0
5

10
15

20

Index

y

Figure 1: Data (hollow dots) and Isotonic Regression (solid dots)

As a check, our implementation of PAVA above prints black dots and the implementation of PAVA in CRAN
package Iso prints red dots. They agree (the red dots are right on top of the black dots).
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4.10 Comment on Our Implementation
When first written, our implementation had two serious bugs that took a lot of time to find.

• We forgot (or didn’t clearly think through what was needed) the list in the last statement of the
repeat loop. Omitting list causes all the blocks to always be length 1 and to always have length(y)
blocks. Not how we intended it to work.

• We forgot about one of the worst “bad parts” of R: the crazy behavior of R function sample when
its first argument has length one, even though our 3701 lecture notes and the R help page for this
function warn about this “undesirable behavior” (to quote the help page). Omitting the if governing
the invocation of sample was a bad bug.

4.11 Generalities about Proving Programs Correct
The best book ever written about computer programming is Dijkstra (1976).

It was not the first work about proving programs correct and certainly not the last. But it is by far the most
elegant and has all the basic principles except for parallel processing.

Parallel processing is much harder; see Feijen and van Gasteren (1999) or Misra (2001) for that.

There are two fundamental ideas of proving programs correct:

• loop invariants, and

• proofs of termination.

Here we have a very complicated loop (steps 2, 3, 4 in the algorithm description, the repeat construct in
the R implementation). We do not know in advance how many times it will execute. We do not know what
it will do in each iteration (that has deliberately been made random so we cannot know).

For loops of that sort, the most important reasoning tool is the loop invariant. This is a logical statement
(something that is math and either true or false) that is asserted to be and can be proved to be true every
time through the loop at the point where the decision is made whether or not to leave the loop.

Here the loop invariant is the assertion that Kuhn-Tucker conditions (a), (c), and (d) (Lagrangian derivative
zero, dual feasibility, complementary slackness) hold every time the program arrives at step 2 of the algorithm
description, arriving there either from step 1 or step 4.

Figuring out a valid loop invariant may be easy or very hard, but always necessary. It is the only good proof
method for programs having complicated loops.

Proving termination (that the program does not do an infinite loop) requires that we can define some
nonnegative integer quantity that decreases in each iteration of the loop. That quantity gives an upper
bound on the number of iterations left to do.

Here the termination bound is the number of blocks. This decreases by one each time through the loop. If
the loop does not terminate before there is only one block, then it must terminate at that time, because
then the estimated regression function is constant (all the constraints hold with equality) so condition (b)
(primal feasibility) is satisfied.

The final bit of proof methodology is to put together the loop invariant and the termination condition. When
the loop terminates, the termination condition is true and the loop invariant is true. Together

loop invariant AND termination condition

should imply whatever we are trying to prove the program does.

Here we claim that PAVA establishes the Kuhn-Tucker conditions for this problem. The loop invariant is
conditions (a), (c), and (d). The termination condition is condition (b). So together that is all the conditions.
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4.12 Proof that PAVA Works
Our proof has already been sketched in the preceding section. We only need to fill in the details. There are
two remaining conditions. We must check

• the initialization step establishes the loop invariant, and

• the PAV step maintains the loop invariant (if the loop invariant holds at the beginning of the step,
then it holds at the end; in our R implementation, if it holds at the top of the repeat construct, then
it also holds at the bottom).

The other parts of the proof are obvious and were argued in the preceding section (number of blocks is a
bound on the number of iterations, and loop invariant and termination condition implies what was to be
proved).

4.12.1 Initialization

It is claimed in the algorithm description section that the initialization 𝜈 = 𝑣 and 𝜅 = 0 satisfies conditions
(a), (c), and (d) of the Kuhn-Tucker conditions.

That it satisfies (c) and (d) is obvious from all the kappas being zero. And all the kappas being zero and
𝑣𝑗 = 𝜈𝑗 for all 𝑗 makes condition (a) also hold.

4.12.2 Loop Invariant

It remains to be shown that the computations in each loop iteration (pooling of adjacent violators) maintains
the loop invariant. The discussion in the section about blocks above shows that making the estimates for
the means in a block the average for the response values in the block satisfies Kuhn-Tucker conditions (a)
and (d) (in fact, this is both necessary and sufficient for that). Thus Kuhn-Tucker conditions (a) and (d)
will clearly hold at the bottom of each iteration. The blocks that are unchanged in the iteration continue to
have estimates that are means for the block. The new block created by pooling also has this property.

So it only remains to be shown that the dual feasibility part of the loop invariant is maintained. And to do
that we have to learn more about Lagrange multipliers.

4.12.2.1 Blocks Revisited

So we return to the notation of the section about blocks above. Now we find out what the Lagrange
multipliers of the block are. As in that section about blocks above, we are only assuming Kuhn-Tucker
conditions (a) and (d) (Lagrangian derivative zero and complementary slackness hold). We are not at this
point assuming dual feasibility.

Now instead of summing over the whole block, we only sum over part. As in that section, we have by
complementary slackness 𝜅𝑗∗−1 = 𝜅𝑗∗∗−1 = 0. Now for 𝑗∗ ≤ 𝑟 < 𝑗∗∗

0 =
𝑟

∑
𝑗=𝑗∗

[ − 𝑤𝑗(𝑣𝑗 − 𝜈𝑗) + 𝜅𝑗 − 𝜅𝑗−1]

= − [
𝑟

∑
𝑗=𝑗∗

𝑤𝑗(𝑣𝑗 − 𝜈𝑗)] + 𝜅𝑟

so
𝜅𝑟 =

𝑟
∑
𝑗=𝑗∗

𝑤𝑗(𝑣𝑗 − 𝜈𝑗) (∗)

Thus the Lagrange multipliers are the running sums of residuals for the block. They are what we have to
check are nonnegative in order to prove dual feasibility.
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4.12.2.2 Characterization of Solution

As an aside, we note that this gives us a complete characterization of solutions. Primal feasibility we know
how to check (the means form a monotone sequence). Now we just learned how to check dual feasibility (the
running sums (∗) over each block are nonnegative).

Let’s check that for our example.
mu <- pava(y)
blocks <- split(seq_along(y), mu)
names(blocks) <- NULL
kappa <- lapply(blocks, function(i) cumsum(y[i] - mu[i]))
kappa <- lapply(kappa, zapsmall)
kappa

## [[1]]
## [1] 0
##
## [[2]]
## [1] 4.466354 3.502936 1.032013 0.000000
##
## [[3]]
## [1] 0
##
## [[4]]
## [1] 0.3738623 0.0000000
##
## [[5]]
## [1] 0
##
## [[6]]
## [1] 0
##
## [[7]]
## [1] 1.584899 0.000000
##
## [[8]]
## [1] 0
##
## [[9]]
## [1] 0.163701 4.351558 5.038997 4.306942 2.891042 0.179028 0.000000
all(unlist(kappa) >= 0)

## [1] TRUE

4.12.2.3 Return to Proof

So now what remains to be shown are two things.

• Initialization establishes dual feasibility (running sums nonnegative).

• Dual feasibility (running sums nonnegative) is a loop invariant.

The first of these is trivial. Initialization starts us with all blocks having length one, and the running sum
for a block of length one is trivially zero (because for a block of length one we have 𝜈 = 𝑣𝑗 by Kuhn-Tucker
conditions (a) and (d)).
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So it remains to be shown that if running sums are nonnegative for all blocks before pooling, they remain
nonnegative for the new pooled block that is created in the PAV step of the algorithm. So now we look at
adjacent violator blocks. For some 𝑗∗, 𝑗∗∗, and 𝑗∗∗∗ we have

𝜈𝑗∗−1 ≠ 𝜈𝑗∗ = ⋯ = 𝜈𝑗∗∗−1 > 𝜈𝑗∗∗ = ⋯ = 𝜈𝑗∗∗∗−1 ≠ 𝜈𝑗∗∗∗

This is in the middle of the computation. We have identified that the block starting at 𝑗∗ and the block
starting at 𝑗∗∗ are adjacent violators and have decided to pool these blocks. We don’t know anything about
other blocks. They are not being touched in this iteration.

We also know the mean values for each block are the averages of the response vector for each block. When
we pool the mean values for the block starting at 𝑗∗ will decrease and the mean values for the block starting
at 𝑗∗∗ will increase.

Hence the kappas for the block starting at 𝑗∗ will increase, and the kappas for the block starting at 𝑗∗∗ will
decrease. The increase cannot cause them to go negative. So we only have to check what happens in the
latter block.

Write

𝜈∗ = 𝜈𝑗∗

𝜈∗∗ = 𝜈𝑗∗∗

𝑤∗ =
𝑗∗∗−1
∑
𝑗=𝑗∗

𝑤𝑗

𝑤∗∗ =
𝑗∗∗∗−1
∑
𝑗=𝑗∗∗

𝑤𝑗

Then the mean for the new pooled block is

𝜈new = 𝑤∗𝜈∗ + 𝑤∗∗𝜈∗∗

𝑤∗ + 𝑤∗∗

The Lagrange multipliers (running sums) are given by (∗) above. For the new pooled block these are

𝜅𝑟 =
𝑟

∑
𝑗=𝑗∗

𝑤𝑗(𝑣𝑗 − 𝜈new), 𝑗∗ ≤ 𝑟 < 𝑗∗∗∗

We know these are nonnegative for 𝑗∗ ≤ 𝑟 < 𝑗∗∗. We are still trying to show they are nonnegative for
𝑗∗∗ ≤ 𝑟 < 𝑗∗∗∗.

Before pooling we had (by the hypothesis that the loop invariant holds at the top of the loop)

𝑗∗∗−1
∑
𝑗=𝑗∗

𝑤𝑗(𝑣𝑗 − 𝜈∗) = 0

𝑟
∑
𝑗=𝑗∗∗

𝑤𝑗(𝑣𝑗 − 𝜈∗∗) ≥ 0, 𝑗∗∗ ≤ 𝑟 < 𝑗∗∗∗
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So for 𝑗∗∗ ≤ 𝑟 < 𝑗∗∗∗ we have

𝑟
∑
𝑗=𝑗∗

𝑤𝑗(𝑣𝑗 − 𝜈new) =
𝑗∗∗−1
∑
𝑗=𝑗∗

𝑤𝑗(𝑣𝑗 − 𝜈new) +
𝑟

∑
𝑗=𝑗∗∗

𝑤𝑗(𝑣𝑗 − 𝜈new)

=
𝑗∗∗−1
∑
𝑗=𝑗∗

𝑤𝑗(𝑣𝑗 − 𝜈∗) +
𝑗∗∗−1
∑
𝑗=𝑗∗

𝑤𝑗(𝜈∗ − 𝜈new) +
𝑟

∑
𝑗=𝑗∗∗

𝑤𝑗(𝑣𝑗 − 𝜈∗∗) +
𝑟

∑
𝑗=𝑗∗∗

𝑤𝑗(𝜈∗∗ − 𝜈new)

≥
𝑗∗∗−1
∑
𝑗=𝑗∗

𝑤𝑗(𝜈∗ − 𝜈new) +
𝑟

∑
𝑗=𝑗∗∗

𝑤𝑗(𝜈∗∗ − 𝜈new)

= 𝑤∗(𝜈∗ − 𝜈new) + (𝜈∗∗ − 𝜈new)
𝑟

∑
𝑗=𝑗∗∗

𝑤𝑗

≥ 𝑤∗(𝜈∗ − 𝜈new) + 𝑤∗∗(𝜈∗∗ − 𝜈new)

because 𝜈∗ > 𝜈new > 𝜈∗∗. And the last line is zero by definition of 𝜈new. So we have checked the last thing
that needed to be checked. The proof is done!

4.13 The Proof and Inexact Computer Arithmetic
Now that we have a proof, we must reconsider it in light of inexact computer arithmetic. Does it describe,
even approximately, what will happen when implemented in a real computer with the computer arithmetic
provided by the computer hardware (described in the unit on that)?

Here this reconsideration is fairly trivial. First, the proof of termination survives. Each time through the
loop, the number of blocks is reduced by one (whether violators are chosen correctly or not), and if we ever
get to one block, then there is no violation of primal feasibility and we can stop without checking anything.
So PAVA does terminate, even if inexact computer arithmetic is used.

This is actually the big worry. Some other algorithms can work perfectly if real real numbers (with infinite
precision) are (hypothetically) used, but infinite loop, crash, or return garbage if inexact computer arithmetic
is used.

Second, does PAVA calculate the right answers if inexact computer arithmetic is used? The answer to that is
“obviously not,” if we mean exactly the right answers; computer arithmetic cannot even represent the exact
right answers. Furthermore, detection of violating blocks in the PAV step cannot be done exactly correctly.
In general, whenever the computer’s so-called “real” numbers are compared for equality or inequality, we can
get wrong answers. That is why R has its function all.equal to compare numbers with a tolerance. But a
tolerance won’t help us here. We have to make decisions, and we have to do it based on inexact computer
arithmetic. So these decisions may just be wrong. And if we cannot correctly detect adjacent violating
blocks in the PAV step, then PAVA may

• either fail to detect adjacent violating blocks that it should pool,

• or incorrectly “detect” and pool non-violating adjacent blocks

and so not have the correct block structure in the answer it calculates.

So how bad is that? The answer is not bad. That is only what we must accept as the price of using inexact
arithmetic. With inexact computer arithmetic, when we make either kind of error, the error we make here
is small, a few machine epsilons. So we will obtain almost the same MLE mean values as if we used infinite
precision arithmetic. If we make an incorrect pooling decision (either pool two blocks that we should not
have or fail to pool two blocks that we should), then the means for the blocks before pooling were nearly
equal (otherwise we would not have made a mistake about the order of their means), hence their means are
nearly equal to the mean after pooling. Thus the incorrect pooling decision makes only a negligible difference
between the means calculated by the algorithm with exact or inexact arithmetic. Thus we argue that PAVA
works even with inexact computer arithmetic. PAVA with inexact arithmetic may get the block structure
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wrong and any of the equalities or inequalities in the Kuhn-Tucker conditions may fail due to inexactness
of computer arithmetic. But the solution (the vector of means that are the MLE) nearly agrees with what
would be computed using exact arithmetic.

Even though our re-analysis in this section turns out to find no issues, we had to do it. That there are no
problems caused by inexact computer arithmetic is only obvious after we have thought it through.

We just mention that we could use infinite precision rational arithmetic provided by CRAN package gmp,
but our analysis in this section says that isn’t necessary.

An example of what we were worried about but didn’t find is provided by CRAN package rcdd. It does have
to use infinite precision rational arithmetic. The help pages for its functions warn

If you want correct answers, use rational arithmetic. If you do not, this function may (1) produce
approximately correct answers, (2) fail with an error, (3) give answers that are nowhere near
correct with no error or warning, or (4) crash R losing all work done to that point. In large
simulations (1) is most frequent, (2) occurs roughly one time in a thousand, (3) occurs roughly
one time in ten thousand, and (4) has only occurred once and only with the ‘redundant’ function.
So the R floating point arithmetic version does mostly work, but you cannot trust its results
unless you can check them independently.

The analysis of this section says we do not need such a warning for PAVA.

4.14 Estimating the Variance
For the same reasons as in linear regression, we do not want to use the MLE for the variance, which is, for
the same reasons as in linear regression, residual sum of squares divided by 𝑛.

We could divide by 𝑛 − 𝑝 where 𝑝 is the number of parameters estimated (number of blocks), but this is
iffy because 𝑝 is a random quantity (depends on the data). So this idea certainly does not give an unbiased
estimator of variance (in contrast to linear regression where it does give an unbiased estimator).

Nor does the usual theory that gives 𝑡 and 𝐹 distributions go through. All the sampling distributions are
known (Barlow et al., 1972; Robertson et al., 1988), but going into all that would take us too much into
theory and too far from computing.

4.15 Exponential Family Response
PAVA also does isotonic logistic regression or isotonic Poisson regression (log link) or isotonic regression
when the response distribution is any one-parameter exponential family. The monotonicity constraints can
be imposed on either mean value parameters or canonical parameters (because the link function that maps
between them is necessarily monotone).

So here we just do an example, isotonic logistic regression (the place kicker problem). These are the data
for kicker Dan Bailey of the Minnesota Vikings in 2018 (source: http://www.nflsavant.com/about.php).
distance <- c(37,39,40,28,37,45,22,52,37,48,26,42,22,43,39,36,36,48,56,

37,48,39,47,36,34,24,29,45)
response <- c(1,1,1,0,1,0,1,1,1,1,1,0,1,1,1,1,1,0,0,1,0,1,0,1,1,1,1,1)

Since R function pava in CRAN package Iso that we used before does not easily handle repeated predictor
values (it does handle them but the user has to put the data in the form it wants, essentially do all the
work described in the section about dealing with duplicate predictor values above), we will use R function
isoreg in the R core. It too has its infelicities, but they are not quite so annoying. One infelicity is that
it cannot do decreasing, so we regress on minus distance rather than distance. A second infelicity is that
it returns the predicted mean values corresponding to the ordered predictor values, not the given predictor
values. However, it also gives the order of the predictor values.
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iout <- isoreg(- distance, response)
plot(distance, response, ylab = "response", xlab = "distance (yards)")
points(distance[iout$ord], iout$yf, pch = 19)
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Figure 2: Data (hollow dots) and Isotonic Regression (solid dots)

4.16 Philosophy
Note that the isotonic regression assumption is undisputable. The response is Bernoulli, and we know the
success probability decreases with distance. Note that we are using mean value parameters to model the
Bernoullis, so no assumption is made about link functions. Now consider that any parametric assumptions
about the mean function would be highly disputable. And any nonparametric methods (smoothing splines or
whatever) would also be disputable. You can do something else, but only isotonic regression is philosophically
clean.

5 Convex Programming
We say the problem described in the section defining the problem the Lagrange multiplier methodology solves
above is a convex programming problem if

• the objective function 𝑓 is convex,

• the constraint functions 𝑔𝑖 are convex for the inequality constraints (for 𝑖 ∈ 𝐼), and

• the constraint functions 𝑔𝑖 are affine for the equality constraints (for 𝑖 ∈ 𝐸).
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For a convex programming problem, there is no difference between the conditions in our Theorem 3.1 and
the Kuhn-Tucker conditions. This is because of the subgradient inequality. For any convex function 𝑓 and
any point 𝑥 where its derivative exists

𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩, for all 𝑦

The right-hand side of this equality is the best affine approximation to the function near 𝑥, the Taylor series
for 𝑓 expanding around 𝑥 with only constant and linear terms kept. So if ∇𝑓(𝑥) = 0, then 𝑓(𝑦) ≥ 𝑓(𝑥) for
all 𝑦.

For a convex programming problem, the Lagrangian is a convex function of 𝑥. Hence any point where the
gradient of the Lagrangian is zero is a global minimizer of the Lagrangian.

A second issue about convex programming problems is whether we are guaranteed that the method of
Lagrange multipliers can always find a solution.

Rockafellar (1970) is the authoritative source for the theory of convex optimization. It has multiple theorems
about the existence of Lagrange multipliers. One which tells us about isotonic regression is Corollary 28.2.2,
which says that if a problem has a solution (the minimum exists) and all of the constraints are affine, then
the method of Lagrange multipliers works.

So this tells us that PAVA is guaranteed to find a global maximizer of the log likelihood. Moreover, since
the log likelihood is strictly concave, this global maximizer is unique.
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