Stat 5102 Notes: ARE of Method of Moments Estimators for the Poisson Distribution

Charles J. Geyer

February 9, 2015

What is the ARE of the two method of moments estimators compared on slides 61–62. deck 2.

These are \overline{X}_n and V_n considered as estimators of the mean of the Poisson distribution. The asymptotic distributions are

$$\overline{X}_n \approx \mathcal{N}\left(\mu, \frac{\mu}{n}\right)$$
$$V_n \approx \mathcal{N}\left(\mu, \frac{\mu_4 - \mu^2}{n}\right)$$

In order to figure out the asymptotic variance of the latter we need to calculate the fourth central moment of the Poisson distribution. We start with the moment generating function.

$$\varphi(t) = E(e^{tX})$$
$$= \sum_{x=0}^{\infty} e^{xt} \frac{\mu^x}{x!} e^{-\mu}$$
$$= \sum_{x=0}^{\infty} \frac{(e^t \mu)^x}{x!} e^{-\mu}$$
$$= e^{\mu(e^t - 1)}$$

and this has derivatives

$$\begin{split} \varphi'(t) &= e^{\mu(e^t - 1)} \mu e^t \\ \varphi''(t) &= e^{\mu(e^t - 1)} (\mu e^t)^2 + e^{\mu(e^t - 1)} \mu e^t \\ &= e^{\mu(e^t - 1)} [\mu^2 e^{2t} + \mu e^t] \\ \varphi'''(t) &= e^{\mu(e^t - 1)} [\mu^2 e^{2t} + \mu e^t] \mu e^t + e^{\mu(e^t - 1)} [2\mu^2 e^{2t} + \mu e^t] \\ &= e^{\mu(e^t - 1)} [\mu^3 e^{3t} + 3\mu^2 e^{2t} + \mu e^t] \\ \varphi''''(t) &= e^{\mu(e^t - 1)} [\mu^3 e^{3t} + 3\mu^2 e^{2t} + \mu e^t] \\ &+ e^{\mu(e^t - 1)} [3\mu^3 e^{3t} + 6\mu^2 e^{2t} + \mu e^t] \\ &= e^{\mu(e^t - 1)} [\mu^4 e^{4t} + 6\mu^3 e^{3t} + 7\mu^2 e^{2t} + \mu e^t] \end{split}$$

and this gives ordinary moments

$$\alpha_1 = E(X) = \varphi'(0) = \mu$$

$$\alpha_2 = E(X^2) = \varphi''(0) = \mu^2 + \mu$$

$$\alpha_3 = E(X^3) = \varphi'''(0) = \mu^3 + 3\mu^2 + \mu$$

$$\alpha_4 = E(X^4) = \varphi''''(0) = \mu^4 + 6\mu^3 + 7\mu^2 + \mu$$

So, finally,

$$\begin{split} \mu_4 &= E\{(X-\mu)^4\} \\ &= E(X^4) - 4\mu E(X^3) + 6\mu^2 E(X^2) - 4\mu^3 E(X) + \mu^4 \\ &= \alpha_4 - 4\mu\alpha_3 + 6\mu^2\alpha_2 - 4\mu^3\alpha_1 + \mu^4 \\ &= (\mu^4 + 6\mu^3 + 7\mu^2 + \mu) - 4\mu(\mu^3 + 3\mu^2 + \mu) + 6\mu^2(\mu^2 + \mu) - 4\mu^3\mu + \mu^4 \\ &= 3\mu^2 + \mu \end{split}$$

and the asymptotic variance of V_n is

$$\mu_4 - \mu_2^2 = 3\mu^2 + \mu - \mu_2 = 2\mu^2 + \mu$$

So \overline{X}_n has smaller asymptotic variance than V_n (for all values of μ) and the ARE is

$$\frac{\mu}{\mu + 2\mu^2}$$

Note that the ARE goes to zero as μ goes to infinity, so V_n gets arbitrarily bad for very large μ . Thus \overline{X}_n is not only the more obvious method of moments estimator but also the better one.