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The impetus for this talk was when BIG (biology interest group,
Minnesota Center for the Philosophy of Science) read

Jonah Lehrer (2010).

The truth wears off: Is there something wrong with
the scientific method?

New Yorker, December 13 issue.

(not a research article).

John P. A. loannidis (2005).

Why most published research findings are false.
PLoS Medicine, 2, el124.

(not a research article).



The Decline Effect

J. B. Rhine, a parapsychologist, in the 1930's posited that effect
sizes decrease as experiments are repeated and called this the
decline effect.

Schooler, a psychologist, has recently been pushing this idea,

Jonathan Schooler (2011).

Unpublished results hide the decline effect.
Nature, 470, 437.

(not a research article).

and the New Yorker article makes much of this — that’s what its
title refers to.

So does the decline effect exist, and if so does it mean the
“scientific method" is wrong?



| delivered a rant in BIG saying

o The “decline effect” is mystical rubbish.

o The phenomenon is real but is a result of well-studied issues:
multiple testing without correction and publication bias.

o These issues should be understood by every user of statistics.

o They should be taught in every statistics class, but aren't

effectively taught. Students don't really understand them.
Most scientists don't really understand them.



New Yorker Article

The New Yorker article actually presents essentially my argument

in the middle.
Leigh Simmons, a biologist at the University of West-
ern Australia ... [said] “But the worst part was when |

submitted these null results | had difficulty getting them
published. The journals only wanted confirming data. It
was too exciting an idea to disprove, at least back then.”
For Simmons, the steep rise and slow fall of fluctuating
asymmetry is a clear example of a scientific paradigm, one
of those intellectual fads that both guide and constrain re-
search: after a new paradigm is proposed, the peer-review
process is tilted toward positive results. But then, after a
few years, the academic incentives shift — the paradigm
has become entrenched — so that the most notable results
now disprove the theory.



New Yorker Article (cont.)

and

Michael Jennions, a biologist at Australian National
University ... similarly, argues that the decline effect is
largely a product of publication bias, or the tendency of
scientists and scientific journals to prefer positive data over
null results



New Yorker Article (cont.)

but then goes off the rails

While publication bias almost certainly plays a role in
the decline effect, it remains an incomplete explanation.
For one thing, it fails to account for the initial prevalence of
positive results that never even get submitted to journals.
[How do we know there is such a prevalence?] It also fails
to explain the experience of people like Schooler, who have
been unable to replicate their initial data despite their best
efforts. [Wrong again. If the effect doesn't exist, then of
course it can't be replicated.]



New Yorker Article (cont.)

eventually getting mystical

Although such reforms [they will be mentioned later]
would mitigate the dangers of publication bias and selec-
tive reporting, they still wouldn’t erase the decline effect.
This is largely because scientific research will always be
overshadowed by a force that can't be curbed, only con-
tained: sheer randomness. Although little research has
been done on the experimental dangers of chance and hap-
penstance, the research that exists isn't encouraging.



Hypothesis Tests

A statistical hypothesis test compares two statistical models, one
simple, the other more complex and containing the simple model
as a special case.

The P-value is the probability, assuming the simple model is
correct, of seeing data at least as favorable to the more complex
model as are the observed data.

If the P-value is large, then the evidence in favor of the complex
model is weak, and we say it fits the data no better than the simple
model (any apparent better fit is not “statistically significant”).

If the P-value is small, then the evidence in favor of the complex
model is strong, and we say it fits the data better than the simple
model (the apparent better fit is “statistically significant”).



Hypothesis Tests (cont.)

What is “large” and “small”? Probabilities are between 0 and 1, so
small is near 0 and large is near 1.

The traditional dividing line is 0.05.
P < 0.05is “small" = “statistically significant”

P > 0.05is “large” = "not statistically significant”



Hypothesis Tests (cont.)

The traditional 0.05 dividing line has nothing to recommend it
other than that it is a round number.

It is a round number because humans have five fingers.

Imagine that! Crucial issues of scientific inference are decided by
counting on our fingers.

| once wrote
Anyone who thinks there is an important difference be-
tween P = 0.049 and P = 0.051 understands neither sci-
ence nor statistics.
But

my coauthor cut it — not because it was wrong but because it
might offend.



Hypothesis Tests (cont.)

0.05 is a weak criterion
Remember Barnet Woolf's definition of statistics as
that branch of mathematics which enables a man to do
twenty experiments a year and publish one false result in
Nature.

recounted by John Maynard Smith in an essay “Molecules are not
Enough” collected in Did Darwin Get it Right?

A 95% confidence interval misses 5% of the time.

P < 0.05 announces “statistical significance” incorrectly (i. e.,
when the effect actually does not exist) 5% of the time.



The central dogma of hypothesis testing.

o Do only one test.
o Choose what test will be done before the data are collected.

o Do it, and report it.

No one does this except the clinical trials people. The statistical
analysis of a clinical trial is prescribed in the trial protocol, which
describes what data will be collected and how it will be analyzed.
Any paper will report this analysis.

Other analyses may also be done and spun wildly in the press
conference, but the valid analysis is published for the scientifically
and statistically astute to read.



Dogma (cont.)

The valid interpretation of P < 0.05, even if the dogma has been
followed is
The complex model fits the data better than the simple

model (the apparent better fit is “statistically significant” ).
or,

more tersely,

The null hypothesis (simple model) is false. But
u

the following is not valid
The mechanistic, causal, scientific explanation | have for
the simple model being incorrect has been proved by statis-
tics.



Publication Bias

A. k. a. the file drawer problem.
What if no paper is published unless P < 0.057

In small studies only large treatment effects are “statistically
significant” and reported.

In large studies both large and small treatment effects are
“statistically significant” and reported.



Funnel Plot

n
r!7
o

All Studies
True Treatment Effect = 0.00

—
o
T
= L0 ° o 80
L .
o K %0 © ° o > e
g ° 8% o ° [ Dma%:bg% S
8 4 o° @y 080 98 %P 8’8 o
o o ° ° 9% o 80 S % 0
= 0 ° o o090 & ° oocao
= ° o o o
% (= 00 ° 0 )
= o ° ° ) ©o% o
g_ ! o o °
Q. — o o ° ° o
m o
o
— | o
CIJ I I I I I
2 2 3 4 5
10 3x10 10 10" 10

study size



Funnel Plot (cont.)
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Publication Bias (cont.)

IMHO publication bias accounts for the “decline effect.”

If larger, more expensive studies are done later, they will have
smaller effect sizes if the effect doesn't really exist.

Exacerbating the publication bias effect is another: as time goes by
and the effect gets “established” in the literature, it gets easier to
publish P > 0.05 to debunk the conventional wisdom.
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Funnel Plot (cont.)
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The solution? Publish every study.

In order to do a study one must before it is started register it in a
permanent on-line database, saying what data will be collected and
what statistical analysis will be done. Any ensuing paper must do
that analysis and report it.

Other analyses may be done and spun any way the authors want,
but the valid analysis is published for the scientifically and
statistically astute to read.

If no paper is ever published, at least we can assume P > 0.05 for
that study.



Registries (cont.)

loannidis (2005), Schooler (2011), and other authorities
recommend such registries.

Some kinds of cancer trials currently have such registries.

I'm not holding my breath until other areas implement them.



The P < 0.05 Criterion

Another solution would be for editors and referees to stop using
P < 0.05 as a criterion for publication.

If only evidence for an idea can be published — all evidence against
an idea is suppressed — what kind of science is that?

But that is what the P < 0.05 standard does.

Of course, that is not the intended effect, but it is the effect!



Multiple Comparison

When the “do only one test” dogma is violated, it can be fixed up
by considering multiple tests as a combined “omnibus” test.

The simplest such correction multiplies each P-value by the
number of tests done (Bonferroni correction). If you do 20 tests,
then you need P < 0.0025 on any one test to declare “statistical
significance” .

Other multiple comparison methodology exists, but is more
complicated and only applies to special situations.



False Discovery Rate

Since the Bonferroni correction is so stringent, many people don't
like it.

Recently, false discovery rate (FDR) correction has been
recommended. This is (slightly) less stringent.

The first “discovery” (smallest P-value) uses the same criterion as
Bonferroni correction, but successive “discoveries” (second
smallest, third smallest, etc.) use (slightly) less stringent cutoffs.

The guarantee (under certain assumptions) is that only some
proportion (usually 0.05) of the “discoveries” will be incorrect.

Like Bonferroni, FDR is much more stringent than multiple testing
without correction.



Louis Guttman (1985).
The illogic of statistical inference for cumulative science.
Applied Stochastic Models and Data Analysis, 1, 3-10

Very few researchers are devoted to testing a single hypoth-
esis or estimating a single parameter. The mathematicians
seem to have forgotten that we are in the age of the com-
puter, which spews forth dozens and hundreds of statistics
from a single study. The mishmash of stars and double
stars in textbooks and journal articles throughout the so-
cial sciences, as well as in other sciences, show something
lacking in the teaching of statistical inference. Almost all
the presumed ‘probabilities’ published are wrong, yet the
teachers of declarative inference remain silent, and refuse
to revise their curriculum.



Electric Power Lines and Cancer

Nancy Wertheimer and Ed Leeper (1979).
Electrical wiring configurations and childhood cancer.
American Journal of Epidemiology, 109, 273-284.

Found an association between (some forms of) childhood cancer
and living close to electric power lines.

A case-control study, multiple testing was done without correction,
and electric and magnetic field levels were estimated rather than
measured.

A typical paper in a respected refereed journal. Multiple later
studies seemed to confirm their findings.



Electric Power Lines and Cancer (cont.)

Paul Brodeur (1989-1990).

Annals of Radiation. The Hazards of electromagnetic fields:
I, Power lines, Il, Something is happening, Ill, Video-display
terminals. Calamity on Meadow Street.

New Yorker, June 12, 19, and 26, 1989 and July 9, 1990.

Paul Brodeur (1989).
Currents of Death.
New York: Simon and Schuster.

Paul Brodeur (1993).

The Great Power-Line Cover-Up: How the Utilities and the
Government Are Trying to Hide the Cancer Hazard Posed
by Electromagnetic Fields.

New York: Little-Brown.



Electric Power Lines and Cancer (cont.)

Committee on the Possible Effects of Electromagnetic Fields
on Biologic Systems, National Research Council (1997).

Possible Health Effects of Exposure to Residential Electric
and Magnetic Fields

Washington: National Academies Press.

(379 pages)



Electric Power Lines and Cancer (cont.)

The NRC report found that the link between electric and magnetic
fields and cancer or other biologic effects had not been established.
It highlighted three issues.

o There was no plausible physical mechanism.

o There was no reproducible evidence from studies in animals,
bacteria, and tissue cultures.

o Most of the epidemiological studies did not directly measure
magnetic field strength in the home and the few that did had
null results.

But it also mentions that some scientists argue that in the
epidemiological studies “proper adjustment has not been made for
multiple comparisons”.



Electric Power Lines and Cancer (cont.)

Martha S. Linet, Elizabeth E. Hatch, Ruth A. Kleinerman, Leslie L.
Robison, William T. Kaune, Dana R. Friedman, Richard, K.
Severson, Carol M. Haines, Charleen T. Hartsock, Shelley
Niwa, Sholom Wacholder, and Robert E. Tarone (1997).

Residential exposure to magnetic fields and acute lymphoblastic
leukemia in children.

The New England Journal of Medicine, 337, 1-7.

(research article)

Edward W. Campion (1997).

Power lines, cancer, and fear.

The New England Journal of Medicine, 337, 44—46.
(editorial)



Electric Power Lines and Cancer (cont.)

The NEJM research article did one test for association with one
cancer (acute lymphoblastic leukemia, ALL). Magnetic field
strength was measured by “blinded” workers (who did not know
whether the resident of the house was a case or control). No
association was found. Not even close to statistical significance.

The odds ratio for ALL was 1.24 (95 percent confidence
interval, 0.86 to 1.79) at exposures of 0.200 i T or greater

as compared with less than 0.065 pT. T
e

NEJM editorial repeats the points made by the NRC report,
including that the epidemiological studies did “huge numbers of
comparisons with selective emphasis on those that were positive.”



Electric Power Lines and Cancer (cont.)

Another large, well designed, well executed study also showed no
effect.

UK Childhood Cancer Study Investigators (1999).

Exposure to power-frequency magnetic fields and the risk of
childhood cancer.

Lancet, 354, 1925-1931.



Electric Power Lines and Cancer (cont.)

All the published studies that did multiple testing without
correction found the link between electric power lines and cancer
(not always the same form of cancer).

All of the studies that obeyed the “only one test” dogma had
negative results.



